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Abstract

This paper details the results of upgrading an effective numerical

technique (derived for multiple-scattering simulations in photon

correlation=cross-correlation with a plane-wave light source) for

the modeling of multiple scattering in a laser beam. The off-axis

shape coef®cients of an arbitrary beam are computed starting from

the set of known beam-shape coef®cients for an on-axis location

by using the addition theorem for the spherical vector wave-

functions of the ®rst kind. The discussed technique is veri®ed by

comparison with a localized approximation for a focused Gaus-

sian beam and with Barton's spheres-arbitrary beam interaction

theory. An additional advantage of the proposed technique (self-

testing of the computation accuracy by comparison of the off-axis

beam-shape coef®cients evaluated from two different on-axis

origins) is demonstrated.

1 Introduction

Modeling of multiple scattering of a plane wave [1±8] and a laser

beam [9±12] by homogeneous spheres has been a topic of

research interest in a variety of areas of practical applications,

including the design of optical sizing systems and signal inter-

pretation in such instruments. In our previous papers [13, 14], the

formalism of exact electromagnetic wave multiple scattering

theory [3, 4] was used for the ®rst time for signal modeling in

photon correlation spectroscopy with a plane-wave light source.

To extend this formalism to the more practical case with laser

beam illumination, one of the well known techniques may be used

for simulation of the beam-shape coef®cients, e.g. the generalized

Lorenz-Mie theory (GLMT) [15, 16], the angular spectrum of

plane waves [12, 17, 18] or the translation addition theorem for

the spherical vector wavefunctions (SVWFs) [19].

The main advantage of the addition-theorem technique [19] is its

validity for an arbitrary beam with known on-axis beam-shape

coef®cients, which characterize the laser beam along its propa-

gation axis. The more general, off-axis, coef®cients are computed

starting from the set of the on-axis coef®cients by using the

addition theorem for the SVWF of the ®rst kind. Recently, an

elegant integral representation of the addition-theorem technique

[19] was derived taking into account the Davis on-axis beam-

shape coef®cients. This integral representation is restricted by the

Davis coef®cients of the ®rst order only and by the TEM00 beam.

The aim of this paper is to extend the application of the addition-

theory technique to the case of multiple scattering of an arbitrary

beam (including Davis beam of an arbitrary order) by an ensemble

of homogeneous spheres.

The body of this paper is organized as follows. A short summary

of the multiple scattering of a plane wave by an ensemble of

spheres is given in Section 2.1 for the so-called single=common-

origin approach. Increasing the computation ef®ciency by the

multiple-origins approach is discussed brie¯y in Section 2.2.

Relationships between the expansion coef®cients of an arbitrary

incident beam and its beam-shape coef®cients derived by using an

addition theorem for the SVWF are presented in Section 2.3. In

Section 3, simulated results are compared with data published for

the interaction of a single sphere and two spheres with a Gaussian

beam and a plane-wave.

2 Multiple Order Scattering by an Ensemble of
Moving Spheres

2.1 Plane Wave Illumination

We assume that a plane wave with wavenumber k propagates along

the Z axis and illuminates an ensemble of N spheres positioned in a

non-absorbing medium L. The wavenumber is de®ned by

k � 2pnL

l
; �1�

where nL is the refractive index of the medium and l is the

wavelength in vacuum. As in previous papers [13, 14], the scat-

tered electric ®eld, Es, from the entire ensemble of spheres is

taken to be the superposition of scattered ®elds, Ei
s, from each of

the spheres in the ensemble, i.e.

Es �
PN
i�1

Ei
s; �2�

where

Ei
s � Ei

oD�Xi�P1
n�1

Pn
m�ÿn

�ai
mn1N�3�mn�kRi

d� � ai
mn2M�3�mn�kRi

d��; �3�
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Ri
d is the vector between the origin of the particle i and a point

detector d, Xi is the position vector of the origin of particle i in the

coordinate system of the particle ensemble (which coincides with

the XYZ experimental coordinate system), respectively, D�Xi� is

the relative sensitivity of detector d, and amn p is the scattered ®eld

expansions of order n and degree m. The extra index p denotes the

mode, in which p � 1 and p � 2 refer to the TM and the TE

modes, respectively, of the scattered ®eld. The incident ®eld

strength in the zi cross-section is given by

Ei
o � Eo exp�ikLe� exp ÿkim Lbi

2

� �
; �4�

where Eo is the ®eld strength of the incident beam, Le is the

distance that the beam has traveled to the ensemble origin e,

i � �ÿ1�1=2 is the unit imaginary number and Lbi is the distance

the beam has traveled through the suspension of turbidity kim (in

fact, kim is the imaginary part of the wavenumber of light in a

dispersed system) to the origin of particle i. As we are working in

the framework of elastic light scattering, we omit the time-

dependent term exp�ÿiot� from all equations, as is the normal

practice. The vector of the scattered ®eld Ei
s, the vector spherical

harmonics Mmn and Nmn and the vector Ri
d are given in a sphe-

rical coordinate system (Ri; yi, and ji) of the sphere i. The

superscript (3) on the coef®cients denotes that the coef®cients are

based on the spherical Hankel functions.

The scattered ®eld expansions ai
mnp of the order n and degree m

employing the single-scattered component (u � 1) and the mul-

tiple-scattering (u � 2) can be expressed by

ai
mnp;e �

P2
u�1

ai;u
mnp;e: �5�

The subscript e for x or y denotes the scattering coef®cients

calculated for the parallel (along the X axis) or perpendicular

(along the Y axis) incident polarization, respectively. The single-

scattering and the multiple-scattering components can be written

as

ai;1
mn p;e � ÿai

n ppi
mn p;e; �6�

ai;2
mn p;e � ÿai

n p

� PN
j�i
j 6�i

PNj
o

l�1

Pl

k�ÿl

�A�3�klmn�k Rij;Yij;Fij�aj
mn p;e

� B
�3�
klmn�k Rij;Yij;Fij�aj

mn�3ÿp�;e�; �7�

where

aj
mn p;e �

P2
u�1

aj;u
mn p;e; �8�

aj;1
mn p;e � ÿaj

n ppj
mn p;e; �9�

and an1 and an2 are the well-known TM and TE Lorenz-Mie

coef®cients of the isolated sphere. The addition coef®cients A and

B of the third kind depend entirely on the distance Rij and the

direction of translation Yij;Fij of origin j to i. The expansion

coef®cients of the incident plane wave propagating in direction z

are given by [3]

pi
1n1;x �

ÿin�1

2

2n� 1

n�n� 1� exp�ikzi�;

pi
ÿ1n1;x �

in�1

2
�2n� 1� exp�ikzi�;

pi
mn1;x � 0; jmj 6� 1; �10�

pi
mn�3ÿp�;e � m pi

mn p;e; pi
mn p;y �

1

i
pmn�3ÿp�;x �11�

As we can see, the scattering Eqs. (5) and (8) are written for all N

particles that participate in the scattering, thus producing a set of

coupled (p � 1; 2� linear Eqs. (5) for the scattered ®eld expan-

sions. The set of these coupled equations is most commonly

solved by the order-of-scattering technique [1, 2] or by iteration

methods [3±8].

It must be noted that the scattered ®eld expansions for all N

particles are obtained now in their own coordinate systems. Hence

the accompanying vector spherical harmonics have to be trans-

lated from the individual particle origins back to the common

(ensemble) origin. As a result of this translation, the required

number of orders, N j
o; in the expansions for the scattered ®eld

from sphere j in Eq. (7) is large, because this number depends not

only on the size of the sphere but also on the above mentioned

translation distance [4]. This last translation (used in our previous

investigation [13] in the so-called single=common-origin

approach) causes numerical convergence problems that have been

discussed comprehensively elsewhere [8]. These problems are

eliminated if one is interested in far-zone scattering only. In this

case (so-called multiple-origins approach), the last set of trans-

lation coef®cients has a straightforward analytical form [8], and

the required number of orders N j
o in the expansions for the scat-

tered ®eld from the jth sphere depends on the size parameter of

this sphere only as shown in Ref. [20] by

Nj
o � rj � 4�rj�1=3 � 2; �12�

where r j � ka j is the Mie parameter and a j is the radius of the jth

sphere.

2.2 Far-zone Assumption

Most optical systems for particle sizing are based on the detection

of the light scattered in the far zone, when smallest distance Ri
d for

each sphere is larger than the largest distance between the spheres,

Rij. For the far-zone assumption, the spherical Hankel functions

can be replaced by their asymptotes [8], and the orthonormal unit

vectors ri, yi, and ji for the i sphere coincide with the corre-

sponding orthonormal unit vectors r, y, and j for the entire

ensemble. Taking into account the above-mentioned asymptotes

of the spherical Hankel function, we can write the vector spherical

functions in the far zone [8] as

M�3�mn�k Ri
d� � �ÿi�n�1 exp�i ki

sR
i
d�

k Ri
d

exp ÿkim
m

Lid

2

� �
� �itmn2�yi�yÿ tmn1�yi�j� exp�imji�; �13�

N�3�mn�k Ri
d� � �ÿi�n exp�i ki

sR
i
d�

k Ri
d

exp ÿkim
m

Lid

2

� �
� �tmn1�yi�y� itmn2�yi�j� exp�imji�; �14�
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where

tmn1�y� � d

dy
Pm

n cos�y�; tmn2�y� � m

sin�y�P
m
n cos�y� �15�

are the scattering functions, Pm
n stands for the associated Legendre

function of the ®rst kind [3] and Lid is the distance in the sus-

pension from the origin of the particle i to point detector d. The

scattered wave vector relative to the origin of the particle i is

de®ned by

ki
s �

kRi
d

Ri
d

� k�sin yi cosjix� sin yi sinjiy� cos yiz�; �16�

where x, y, and z are the unit vectors of the Cartesian coordinate

system.

We consider that Ri
d � Rd in the far zone and that the relation

between the position vectors of sphere i and detector d can be

expressed by

Ri
d � Rd ÿ Xi �17�

where Rd is the position vector of the detector in the experimental

frame.

By inserting Eq. (17) into Eqs. (13) and (14), and then Eqs. (13)

and (14) into Eq. (3), we can rewrite the expression for the Ei
s

®eld scattered from sphere i in a form that is suitable for the

analysis of particle motion on the signal [14], i.e.

Ei
s � iTPi

s; �18�
where

T � EoD�Xi� exp�i ki
sRd�

k Ri
d

exp�i kLe� exp ÿkim
m

Lbi � Lid

2

� �
�19�

is a coef®cient which does not depend strongly on the motion of

particle i. The vector scattering amplitude, Pi
s, re¯ects the main

contribution of the particle motion to the signal in the photon

cross-correlation. The components of vector Pi
s of the scattering

amplitudes, polarized in the y and j directions [6], are expressed

by

Pi
y � exp ÿiki

sX
i

ÿ ��Si
2�yi;ji�ei

x � Si
3�yi;ji�ei

y�; �20�

Pi
j � exp ÿiki

sX
i

ÿ ��Si
4�yi;ji�ei

x � Si
1�yi;ji�ei

y�; �21�
where ei

x and ei
y are the components of the unit polarization vector

of the plane wave that illuminates sphere i, and

Si
1�yi;ji� � P1

n�1

Pn
m�ÿn

P2
p�1

�ÿi�nai
mn p;e�ytmn�3ÿp��yi� exp�imji�;

�22�

Si
2�yi;ji� � P1

n�1

Pn
m�ÿn

P2
p�1

�ÿi�n�1ai
mn p;e�xtmn p�yi� exp�imji�; �23�

Si
3�yi;ji� � P1

n�1

Pn
m�ÿn

P2
p�1

�ÿi�n�1ai
mn p;e�ytmnp�yi� exp�imji�; �24�

Si
4�yi;ji� � P1

n�1

Pn
m�ÿn

P2
p�1

�ÿi�nai
mn p;e�xtmn�3ÿp��yi� exp�imji�;

�25�
are the four elements of the amplitude scattering matrix [5, 6]. As

mentioned above, the subscript e for x or y denotes a scattering

coef®cient calculated for parallel (along the X axis) or perpen-

dicular (along the Y axis) incident polarization, respectively. We

assume the same polarization of the incident wave for all particles,

i.e.

ei
x �

Ex

Eo

; �26�

ei
y �

Ey

Eo

; �27�

where Ex and Ey correspond to incident plane wave polarization in

the x and y directions, respectively, in the cross-section of the

light emission.

The exponential coef®cient in Eqs. (20) and (21) is the product of

Eq. (17) in the above-mentioned multiple-origins scattering

approach, and its use eliminates the last translation of the partial

wave scattering amplitudes ai
mnp;e in Eqs. (22)±(25) from the

origin of each sphere to the common (ensemble) origin. This

exponential coef®cient con®rms that our model is in agreement

with published results [8] based on deriving the analytical

expression for the vector coef®cients of the last translations to the

common origin. The computation ef®ciency of the multiple-

origins approximation of the scattering by a particle ensemble in

the far zone was investigated recently [8] in comparison with the

single-origin approximation for the far-®eld scattering [3].

2.3 Arbitrary Beam Illumination

The core of the proposed upgrade strategy is the off-axis expan-

sion coef®cients pi
mn p;e of an arbitrary beam at the origin of the ith

sphere. If an on-axis origin, e, is chosen on the Z axis of the laser

beam, these coef®cients can be simulated by using a translation

addition theorem for spherical vector wave functions [19], i.e.

pi
mn p;e �

P
l�1

P1
k�ÿ1;k 6�0

�A�1�klmn�k Rie;Yie;Fie�pe
kl p;e

� B
�1�
klmn�k Rie;Yie;Fie�pe

kl�3ÿp�;e�: �28�
The addition coef®cients A and B of the ®rst kind depend on the

distance Rie and the direction of translation Yie, Fie of the on-axis

origin e to the origin of the ith sphere. The expansion coef®cients

at the on-axis origin can be expressed by

pe
m��1n p�1;x � p

plane
m��1n p�1;xge

n; �29�
where the on-axis coef®cients ge

n are de®ned in the classical

beam-shape formalism [15], and

p
plane
m��1n1;x � 1

2
Cm��1n �30�

are the well know expansion coef®cients for the plane-wave

incident ®eld [5]. The normalized constant Cmn can be expressed

as in Ref. [19]:

Cmn

Cn m � 0

�ÿ1�jmj �l � jmj�!�l ÿ jmj�! Cn m50

8<: �31�

where

Cn � inÿ1 �2n� 1�
n�n� 1� : �32�

It is evident that coef®cients de®ned by Eqs. (10) and (30)

coincide where zi � 0. To evaluate the TE and y-polarized on-axis
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expansion coef®cients pe
�1n p;e; one can use Eq. (11), which was

de®ned for the plane-wave expansion coef®cients.

According to the presented formalism, the classical on-axis

coef®cients ge
n are taken as starting coef®cients for an arbitrary

incident beam. To simulate the starting on-axis coef®cients for a

Gaussian laser beam, any known analytical expression for ge
n can

be used [21]. In our simulations we use the modi®ed localized

approximation [15] for the high-order Davis beam, i.e.

ge
n � Q exp�ÿ�nÿ 1��n� 2�Qs2� exp�ikze� �33�

and the mth-order Barton symmetrized beam [15, 21], which is

given by

ge;m
n �

Pj�2

j�0

Pl�2m�1

l�0

ÿ2isze

oo

� �
�ÿ1�ls2l

� �l � j�!
l!j!

1

l!

�nÿ 1�!
�nÿ 1ÿ l�!

�n� 1� l�!
�n� 1�! exp�ikze�; �34�

where the on-axis origin e is characterized by the ze coordinate.

The fundamental parameter related to the waist radius oo is

de®ned by

s � 1

koo

�35�

and

Q � 1

1� 2isze=oo

: �36�

If one is interested in the Davis beam of the ®rst order only,

characterized by the ®rst-order on-axis coef®cients, which are

de®ned by

ge
n � Q exp�ÿ�n� 0:5�2Qs2� exp�ikze�; �37�

the integral representation technique [19] can be used as an

effective solution of Eq. (28).

Relationships between two kinds of off-axis beam-shape coef®-

cients (de®ned in the classical formalism and in the presented

technique) can be expressed at the origin of sphere i by

gi
mnTM;e �

1

Cmn

pi
pm p�1;e �38�

and

�igi
mnTE;e� �

1

Cmn

pi
mn p�2;e: �39�

3 Numerical Results

The formulation presented in this paper has been used to upgrade

the computer code developed recently for the signal modeling in

photon correlation=cross-correlation spectroscopy [13, 14]. The

code involves numerical algorithms developed by Mackowski [3,

4] for the addition coef®cients A and B, and for solving of coupled

� p � 1; 2� linear Eqs. (5) for the scattered ®eld expansions when

the single=common origin approach is used. We do not intend to

discuss the numerical results in detail. Numerical calculations are

presented to illustrate the correctness of the upgraded code by

comparison with published data.

Table 1 shows a quantitative comparison of the localized

approximation method (data are borrowed from Ref. [19] for an

x-polarized Gaussian TEM00 beam with oo � 5mm, l � 0:5 mm,

nL � 1, xi � yi � 2 mm, zi � 10 mm) and the addition-theorem

method concerning the values of the gi
mn;TM . The analytical

expression Eq. (34) for the ®fth-order Barton symmetrized beam

[15] is used to simulate the starting on-axis coef®cients ge
n at

ze � zi � 10 mm. The cumulative relative differences for the real

and imaginary parts, which are less than 0.12%, con®rms the

good agreement between the two techniques. Different signs are

caused by the fact that the de®nition of the Legendre functions Pm
n

in the two compared techniques differs by the coef®cient �ÿ1�m
[3, 19].

It must be noted that the additional advantage of the described

technique is that it permits the self-testing of the computation

accuracy by comparison of the off-axis beam coef®cients eval-

uated from two different on-axis origins, for example, from ze � 0

and from ze � zi (where zi is the coordinate of the ith sphere along

the Z axis). The cumulative relative difference, CRD, for the real

and imaginary parts de®ned by

CRD � 1

2

����Re�gi
mn TM;e�zi�� ÿ Re�gi

mn TM;e�0��
Re�gi

mn TM;e�zi��
����

"

�
���� Im�gi

mn TM;e�zi�� ÿ Im�gi
mn TM;e�0��

Im�gi
mn TM;e�zi��

����� �40�

is shown in Figure 1 for the x-polarization of the ®fth-order

Barton symmetrized beam with oo � 5mm, l � 0:5mm, nL � 1,

xi � yi � 2mm and zi � 10 mm. The fact that the CDR is less than

0.031% con®rms the high accuracy of the addition-theorem

technique and the effectiveness of the self-testing that is available

with it.

Table 1: Comparison of gi
mn;TM off-axis coef®cients computed by

localized approximation and addition theorem: xi � yi � 2 mm,
zi � 10mm, l � 0:5 mm, oo � 5 mm.

Re (gmn;TM ) Im (gmn;TM )
5(m� n)

Localized
approximation

Addition
theorem

Localized
approximation

Addition
theorem

1 9.82716E-04 ÿ9.83516E-04 9.16325E-03 ÿ9.16683E-03
2 2.94447E-03 ÿ2.94684E-03 2.74665E-02 ÿ2.74776E-02
3 5.87785E-03 ÿ5.88258E-03 5.48635E-02 ÿ5.48853E-02
4 9.77181E-03 ÿ9.77968E-03 9.12850E-02 ÿ9.13239E-02
5 1.46116E-02 ÿ1.46234E-02 1.36638E-01 ÿ1.36696E-01
6 3.62323E-01 3.62568E-01 ÿ1.57210E-02 ÿ1.57457E-02
7 3.62064E-01 3.62308E-01 ÿ1.57598E-02 ÿ1.57840E-02
8 3.61676E-01 3.61920E-01 ÿ1.58172E-02 ÿ1.58412E-02
9 3.61159E-01 3.61402E-01 ÿ1.58935E-02 ÿ1.59174E-02

10 3.60514E-01 3.60755E-01 ÿ1.59882E-02 ÿ1.60110E-02
12 ÿ2.53439E-03 2.53663E-03 ÿ2.04327E-03 2.04479E-03
13 ÿ2.53117E-03 2.53339E-03 ÿ2.04061E-03 2.04215E-03
14 ÿ2.52688E-03 2.52918E-03 ÿ2.03707E-03 2.03861E-03
15 ÿ2.52153E-03 2.52381E-03 ÿ2.03266E-03 2.03425E-03

Fig. 1: Cumulative relative differences for the real and imaginary parts of
gi

mn;TM ; x computed in addition-theorem technique from two different on-
axis origins (ze � 0 and ze � zi) for the ®fth-order Barton symmetrized
beam with oo � 5 mm, l � 0:5mm, nL � 1, xi � yi � 2 mm, zi � 10mm.
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Figure 2 illustrates three schemes for the interaction of two

spheres with a plane wave (Figure 2a) and with a Gaussian beam

of the waist radius oo � 5a and oo � 2:22a (Figure 2b and c,

respectively). Each sphere of radius a � r=k has a size parameter

r � 3:083 (Figure 2a and b) and r � 11 (Figure 2c). The

refractive index of each sphere is 1.61� i0.004 (Figure 2a and b)

and 1.334� i1.2610ÿ9 (Figure 2c) in a medium of refractive

index nL � 1. In Figure 2c, two spheres are positioned in a

Gaussian beam at (x � y � z � 0� and (x � 2a, y � 0, z � 3:46a).

The multiple scattering effects are modeled for these three

schemes to compare with results published in Refs. [8] and [9].

Figures 3 and 4 refer to the illumination of two spheres by a plane

wave as shown in Figure 2a and in Ref. [8]. The center-to-center

separation is chosen as Rij � 2:6a (Figure 3) and Rij � 10a

(Figure 4). Angular distributions of the scattering intensity i22 in

Figure 3 and intensity i11 in Figure 4 are given on a semi-loga-

rithmic scale for the single-origin approach (SO) and the multiple-

origins approach (MO). The scattering intensities are de®ned by

i11 � jS1�y; 0�j2; i22 � jS2�y; 0�j2: �41�

The required number of scattering terms, NO, for the single-origin

approach is 15 if Rij � 2:6a and 26 if Rij � 10a. Figures 3 and 4

show a negligible difference between the SO approach and the

more ef®cient MO approach which requires only NO � 9 scat-

tering terms. The angular distribution of i22 for an intersphere

separation Rij � 2:6a in Figure 3 and i11 for Rij � 10a in Figure 4

are in good agreement with results published recently [8] (Figures

1, 3 and 6).

As mentioned above, the discussed technique permits modeling of

the multiple-scattering effects in an arbitrary beam. Figures 5 and

6 illustrate a multiple scattering simulation in Gaussian beams.

Figure 5 shows the angular distribution of the scattering intensity

i11 from two spheres of radius a positioned with intersphere

separation of Rij � 10a in the Gaussian beam as shown in

Figure 2b.

As an additional veri®cation of the proposed technique, Figure 6

illustrates the normalized intensity (the time-averaged Poynting

Fig. 2: Scattering schemes modeled in this paper to illustrate the cor-
rectness of the upgraded code by comparison with data published in Refs.
[8] and [9]. Two spheres are illuminated by a plane wave (a) or a Gaussian
beam of the waist radius oo � 5a and oo � 2:22a (b and c, respectively).
Each sphere of radius a � r=k has a size parameter of r � 3:083 (a and
b) and r � 11 (c). The refractive index of each sphere is 1:61� i0:004 (a
and b) and 1:334� i1:2� 10ÿ9 (c) in a medium of refractive index
nL � 1. In (c), two spheres are positioned in a Gaussian beam at
(x � y � z � 0) and (x � 2a, y � 0, z � 3:46a), respectively.

Fig. 3: Angular distributions of the scattering intensity i22 from two
spheres of radius a illuminated by a lane wave (see Figure 2a, center-to-
center separation Rij � 2:6a). Comparison between the single-origin
approach (SO) and the multiple-origins approach (MO). The required
number of scattering terms, NO, for the SO approach and the MO
approach is 15 and 9, respectively.

Fig. 4: Angular distributions of the scattering intensity i11 from two
spheres of radius a illuminated by a plane wave (see Figure 2a, intersphere
separation Rij � 10a): Comparison between the single-origin approach
(SO) and the multiple-origins approach (MO). The required number of
scattering terms, NO, for the SO approach and the MO approach is 26 and
9, respectively.

Fig. 6: Normalized scattering intensity Sr as a function of angle in the
xÿ z plane for two spheres positioned as shown in Figure 2c.

Fig. 5: Angular distribution of the scattering intensity i11 form two
spheres of radius a with intersphere separation Rij � 10a positioned in a
Gaussian beam as shown in Figure 2b.
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vector) in one of Barton's known scattering schemes (see Figure

2c). This scheme [9] is characterized by two spheres of size

parameter r � 11 (radius a � r=k� and refractive index

1:334� i1:2� 10ÿ9, that positioned at �x � y � z � 0� and

x � 2a, y � 0, z � 3:46a), respectively, in a Gaussian beam of

waist radius oo � 2:22a as shown in Figure 2c. The time-aver-

aged Poynting vector is de®ned by

Sr � jS2�y;j � 0�j2 � jS4�y;j � 0�j2
pr2

: �42�

The angular distribution of the normalized intensity Sr presented

in Figure 6 is in good agreement with published data Ref. [9]

(Figure 7).

4 Conclusions

Direct use of the addition theorem for the spherical vector wave

function has been demonstrated for the evaluation of the beam-

shape coef®cients in the general case of an off-axis location of the

scatterer. In contrast with the integral representation of the

translation coef®cients [19], this technique is valid for an arbitrary

beam with known on-axis expansion coef®cients. The discussed

technique is veri®ed by comparison with localized approximation

of a focused Gaussian beam, and it was integrated in the code [13,

14] for modeling of multiple scattering effects. Results obtained

by this upgraded code are in good agreement with published data

[8, 9]. An additional advantage of the proposed technique (self-

testing of the computation accuracy by comparison of the off-axis

beam-shape coef®cients evaluated from two different on-axis

origins) is demonstrated. The most effective application of the

addition-theorem technique is the signal simulation in dynamic

light scattering [13, 14]. This technique can also be used in signal

modeling for particle counters=sizers [6] and phase-Doppler

anemometry [11].

5 Symbols and Abbreviations

A;B addition coef®cients

aj radius of sphere j

amn p scattered ®eld expansions

Cmn normalized constant

CRD cumulative relative differences

D relative sensitivity of detector

d subscript for the point detector

dj
p diameter of the jth sphere

Es scattered electric ®eld

Eo ®eld strength of the incident beam

ex; ey components of the polarization vector of the incident

®eld

gmn classical beam-shape coef®cients

i unit imaginary number

i; j superscripts for sphere i and sphere j, respectively

i11, i22 scattering intensities

k wavenumber

kim imaginary part of the wavenumber of light in a

dispersed system (turbidity)

Lbi distance the beam has traveled through the suspen-

sion to the origin of particle i

Le distance that the beam has traveled to the ensemble

origin e

Lid distance in the suspension from the origin of particle

i to point detector d

Mmn;Nmn vector spherical harmonics

MO multiple-origin approach

m subscript that denotes the degree of the ®eld expan-

sions

N total number of spheres in the cell

Nj
o required number of orders in the expansions for the

scattered ®eld from sphere j

n subscript that denotes the order of the ®eld expan-

sions

nL refractive index of a non-absorbing medium

Pm
n associated Legendre function

Pi
s vector scattering amplitude for sphere i

P subscript that refers to the TM (p � 1) or the TE

(p � 2) mode

Pi
mn p;e coef®cients of an arbitrary beam at the origin of the

ith sphere

Q parameter in localized approximation for a focused

Gaussian beam

�R; y;j� spherical coordinate system

Rij intersphere separation

Rd position vector of the point detector relative the

origin of the particle ensemble

S1 ÿ S4 elements of the amplitude scattering matrix

SO single-origin approach

Sr normalized intensity (the time-averaged Poynting

vector)

s fundamental parameter in localized approximation

for a focused Gaussian beam

T coef®cient which does not depend strongly on the

motion of a particle

TE transverse electric

TM transverse magnetic

X position vector

x; y; z unit vectors of the Cartesian coordinate system

u superscript that denotes order of scattering (u � 1

corresponds to single scattering, u � 2 corresponds

to multiple scattering)

an1, an2 TM and TE Lorenz-Mie coef®cients of an isolated

sphere, respectively

e subscript that denotes X �e � x� or Y �e � y� polariza-

tion of the incident beam

l wavelength

r Mie parameter

tmn p scattering functions

oo waist radius of the incident beam
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